The department has teaching and research interests in many aspects of Biology from the cellular and molecular level to organismal to global ecological and conservation issues

Friday, April 29, 2011

iCLUB - Communication across disciplines

Holly Gaff and Jenifer Alonzo (Communication and Theatre Arts) received funding from the National Science Foundation for a resource co-ordination network incubator.  Their project, entitled iCLUB, will help biologists to collaborate across disciplines.

Groups of collaborators will participate in a foundational communication workshop. The workshop teaches scientists to use tools that actors use  to  build rapport, communicate differences in personal and disciplinary values, and to rehearse strategies for communicating difficult messages. These difficult messages might include concerns over tardiness, concerns about the quality of another scientists’ work, and concerns about professional presentation.

Leaders of groups who participate in the workshops will then meet together at ODU to learn additional tools for promoting healthy communication in interdisciplinary settings.  ICLUB also includes an online presence in which biologists who collaborate at disciplinary intersections might help one another with communication problems via video chat, list-serves, and discussion boards.

Dr. Gaff and Professor Alonzo hope that iCLUB will serve as a model for scientists who collaborate across disciplines in order to work on “big problems” like climate change, sea level rise, public health issues, and energy use.

Studying swimming animals.

Ian Bartol, Associate Professor of Biological Sciences, recently received funding from the National Science Foundation (NSF) for the study “A new integrated quantitative metrics approach for identifying coordinated gaits in swimming animals”.  For this project, Dr. Bartol is leading a collaborative team that includes Dr. Paul Krueger (Southern Methodist University) and Dr. Joseph Thompson (Franklin and Marshall College).

For the large and diverse group of aquatic animals that use multiple propulsors for swimming, simultaneously quantifying both the motion of the propulsors and the resulting fluid flow is not trivial, requiring new technologies and approaches. The goal of this NSF project is to develop a novel 3D approach for studying swimming animals. The team will focus on squid, a marine swimmer that employs two separate but coordinated propulsive systems (jets and fins).  The integrated approach involves several emerging methods in the fields of biology, mathematics, and engineering, including a cutting edge 3D flow quantification technique, known as defocusing digital particle image velocimetry (DDPIV); high-speed, high-resolution videography; and new mathematical algorithms for quantitatively distinguishing between hydrodynamic and kinematic patterns based on their physical features. The methods will be combined in a novel way to collect unique 3D data sets, identify transitions in 3D wakes and 3D body motions, and correlate these transitions with salient measures of propulsive performance for the purpose of quantitatively identifying coordinated gaits in swimming animals.

This research holds great promise for developing a universal framework for gait identification in any swimmer or flyer, especially those employing multiple systems/propulsors, and thus may potentially transform current methods for studying locomotion.  Beyond the field of biology, the approach promises to provide a valuable framework for engineers of bioinspired propulsion systems, who may be seeking improved propulsive performance in compact designs similar to what nature offers.